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Abstract. We study a class of one-dimensional nonlinear lattices with nearest-neighbour interactions de-
scribed by a potential of the binomial type. This potential contains a free parameter which can be chosen
to reproduce a variety of models, such as the Toda, the Fermi-Pasta-Ulam and the Coulomb-like lattices.
Carrying out essentially numerical experiments, the effects of soliton propagation on a lattice with defects
are investigated. In particular, the properties of the localized mode, generated by the propagation of the
soliton through the defect, are discussed with respect to the defect mass and the potential parameter, in
the light of a simple theoretical model. Furthermore, an interesting phenomenon is observed: the amplitude
of the speed of the mass defect shows a sequel of resonance peaks in terms of the mass defect. The positions
of these peaks appear to be independent of the potential parameter.

PACS. 63.10.+a General theory – 05.45.-a Nonlinear dynamics and nonlinear dynamical systems –
05.45.Yv Solitons

1 Introduction

In the study of discrete dynamical systems with nearest-
neighbour interactions, generally the absence of integra-
bility properties compels one to exploit suitable approx-
imations or to integrate numerically the equations of
motion. Usually the continuous approximation of a given
lattice leads to a nonlinear partial differential equation
whose solutions can be employed, in theory, as initial con-
ditions for solving via numerical procedures the original
discrete equations. On the other hand, continuous limits
of lattice systems can be considered as phenomenologi-
cal models with a proper identity and, apart from some
lucky circumstances, the intrinsic properties of lattice sys-
tems and their corresponding field versions are not always
preserved. The problem becomes much more complicated
when lattices with defects are studied. In these cases the
discreteness of the lattice cannot be ignored when certain
effects involving, for example, soliton dynamics [1] and
excitation of localized modes are dealt with [9].

The main purpose of this paper is just to analyse
the interaction between solitons and defects in a one-
dimensional lattice in case the nonlinear character of the
interaction is dominant, in such a way that both the ef-
fects of the discreteness and the strong nonlinearity can
be evidenced.

We investigate a wide class of nonlinear atomic chains
whose equations of motion come from a potential of the
“binomial” type introduced by some of us a long time
ago [2]. This model, described in Section 2, contains

a e-mail: soliani@le.infn.it

a free parameter γ which allows us to cover several special
cases of physical interest, running from the Toda poten-
tial (γ→ ∞), to the Fermi-Pasta-Ulam (γ = 3) and the
Coulomb-like potential (γ =−1). The binomial potential
includes the linear case as well, which is reproduced for
γ= 2.

Section 3 is devoted to the Cauchy problem for the
equations of motion of the lattice. In the long wave ap-
proximation of the discrete model, we obtain two solutions
of the equations of motion of the supersonic and subsonic
travelling wave type. In the supersonic case, independently
of the value of the parameter γ, under certain conditions
a solitary wave propagates without ripples. This solution
can be interpreted as a soliton-like pulse. At the increas-
ing of the supersonic character of the initial condition,
a sequence of ripples appears around the main travelling
wave, due to the discreteness of the lattice.

Using the supersonic solution (a kink soliton) as initial
condition, in Section 4 we consider the lattice in presence
of a defect mass. We carry out computer experiments for
different choices of the parameter γ, including the Toda
case. Independently of the kind of binomial potential, the
interaction of the kink with the defect excites a localized
mode which turns out to decay exponentially in the space
variable. This localized motion of the defect is harmonic
with a period depending on the mass md of the defect
and on γ.

Moreover, a notable phenomenon appears. Precisely,
in the plot of the amplitude of the mass defect speed in
terms of md, a sequel of resonance peaks is present.

Concerning the analysis of the periods of oscillations
as functions of md and γ we resort to a simple model
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which explains fairly the numerical results. On the con-
trary, we have not be able to find any satisfactory theo-
retical explanation for the presence of resonance peaks in
the amplitude of the mass defect speed. A possible rea-
son of this is due to the fact that the classical methods of
linear approximation of the defect-soliton interaction are
not adequate when strong nonlinearity behaviours occur.
The linear approximation allows one to explain only the
main peak of resonance, as it is shown in reference [7].

In Section 5 the analysis of Section 4 is extended to the
case of a lattice with two defective atoms. In this case we
obtain again the appearance of multi-peak resonance phe-
nomena, which are widely discussed. Finally, in Section 6
some concluding remarks are reported.

2 The model

Let us consider a one-dimensional chain of atoms interact-
ing through the nearest-neighbour potential φ(yn+1−yn),
where yn denotes the displacement of the n atom from
its equilibrium position. The system is described by the
Hamiltonian

H =
N∑
n=1

1
2
mn

·
y

2

n +
N−1∑
n=1

φ(yn+1 − yn). (1)

Here we deal with some special cases of the potential of
the binomial type

φ(rn) =
a

b

[(
1 +

b

γ
rn

)γ
− (1 + brn)

]
, (2)

where rn = yn+1 − yn, γ is a real parameter, and a, b
are constants characterizing the force and length scale,
respectively (if ab > 0, then γ < 0 or γ > 1; if ab < 0,
0 < γ < 1).

The equations of motion for the atoms of the lat-
tice, i.e.

mnÿn = fn − fn−1 (n = 2, ..., N − 1), (3)

where

fn = a

[(
1 +

b

γ
rn

)γ−1
]
, (4)

are derived from

d
dt
∂H

∂ẏn
= − ∂H

∂yn
(5)

with n = 1, ..., N.
Equations (3) can be written in the compact form

ÿn = ω2
n

p(γ)∑
i=1

αi(γ)(rin − rin−1) (6)

where

ω2
n =

k

mn
=

ab

mn

γ − 1
γ

(7)

k being the constant of the springs, and

p(γ) =
{
γ − 1, γ ∈ N
+∞, γ ∈ R−N (8)

with

αi(γ) =


1, i = 1

bi−1
i∏
l=2

γ−l
lγ , 1 < i ≤ p(γ). (9)

3 The Cauchy problem

To solve the Cauchy problem for equations (3), we have
considered a continuous approximation of this, so that so-
lutions of the resulting equation can be used as initial
conditions for equations (3) in our numerical simulations.

To this aim, let us deal with the expansion in Taylor’s
series of yn±1, namely

yn±1 = yn ± h
∂yn
∂x

+
h2

2!
∂2yn
∂x2

± h3

3!
∂3yn
∂x3

+ ..., (10)

where x = nh, and h is the space distance between the
atoms of the lattice at rest. If yn is considered as a function
of x and t, substitution from (10) into (3) yields

ytt = c2
(
yxx +

h2

12
yxxxx

)[
1 + 2hα2

(
yx +

h2

6
yxxx

)
+3h2α3

(
y2
x +

h2

12
y2
xx +

h3

3
yxyxxxx

)
+ ...

]
(11)

where c2 = h2k/m, yx = ∂y/∂x, yt = ∂y/∂t, etc.
If we restrict ourselves to take into account in (11) only

the terms up to the second order in h, we obtain

ytt = c2
[(

1 + 2hα2yx + 3h2α3y
2
x

)
yxx +

h2

12
yxxxx

]
. (12)

We remark that equation (12) is of physical relevance.
For example, it appears in the study of heat pulses prop-
agation in solids [3]. We observe that the coefficients α2

and α3 depend on the parameter γ involved in the poten-
tial (2). Now we look for a solution to equation (12) of the
travelling supersonic wave type

y = y(x− vt) = y(χ), (13)

where v (v > c) is a constant (the speed of the wave).
Inserting (13) into (12), we obtain

(λ− 1)yχχ − 2hα2yχyχχ

− 3h2α3y
2
χyχχ −

h2

12
yχχχχ = 0, (14)

where λ = v2/c2, and yχ = dy/dχ, and so on.
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With a suitable choice of the constants of integration,
equation (14) provides the solution

y(x, t) = 2
A
√
D

arctan B+eA(x−vt−χ0)

2
√
D

, (15)

ẏ(x, t) = −v eA(x−vt−χ0)

D+

2
4B + eA(x−vt−χ0)

2

3
5

2 , (16)

where A =
√

12(λ− 1)/h, B = 2α2h/3(λ − 1), D =
α3h

2/2(λ−1), and χ0 is a constant. The quantity (15) rep-
resents a solution of the solitary wave kind, propagating
with a velocity v, whose amplitude and width are charac-
terized by the parameters A, B and D.

In the case of subsonic speeds (v < c), i.e. for λ < 1,
equation (14) affords the solution

y(x, t) = − 2
A
√
D

×
{

arctan
B tan A(x−vt−x0)

2 −
√
B2 − 4D

2
√
D

+ nπ

}
if A(x − vt − x0)/2 ∈ ((n − 1/2)π, (n + 1/2)π), n ∈ Z,
where A =

√
12(1− λ)/h, B = 2α2h/3(1 − λ), D =

α3h
2/2(1− λ), and B2 − 4D > 0. The last condition can

be expressed as

2γ − 7
3(γ − 3)

< λ < 1,

in terms of γ, where γ < 2 or γ > 7/2.
We notice that the kind of solutions obtained for

λ < 1 cannot be exploited as initial condition to solve
the Cauchy problem for the equations of motion (3). This
happens because y(x, t) is divergent asymptotically.

The functions (15, 16) have been used as initial condi-
tions to determine numerical solutions to equations (3). In
doing so, we have applied a bilinear symplectic algorithm
of the third order, which has been adapted from an algo-
rithm employed previously by Casetti [4]. Such a recipe
allows us to obtain a control of the total energy E of the
lattice, which ensures a relative error ∆E/E < 10−6. In
our numerical calculations, we have considered a lattice
with 66 atoms, the first and the last of which are fixed.
The integration time step ∆t comprises values ranging
from 0.1 to 0.005. The last value is approximately 10−3

times the period of oscillation of the atoms in the harmonic
case (see (7) for γ = 2). The time length of integration in
all the simulations covers about 40 periods of these har-
monic oscillations (7 × 104 time steps). Concerning the
choice of the number of atoms in the lattice, we have per-
formed several numerical integrations with a number of
atoms greater than 66, until 150, obtaining essentially the
same results. The numerical simulations have been per-
formed by choosing a = b = h = mn = 1 and χ0 = 5 for
any atom of the lattice. The remaining parameters, α2, α3

and c, are defined in correspondence of the choice of the
potential (2), i.e. for a fixed γ. Then the only free param-
eter is λ = v2/c2, in terms of which we have studied the
behaviour of the solitary wave travelling in the lattice.

From the analysis of the numerical data obtained by
us emerges that, independently of γ, for values of λ > 1
slightly different from 1, in the lattice a solitary wave prop-
agates which preserves its shape. The profile of this wave
remains unaltered in time also during the many reflections
on the atoms situated at the fixed ends of the lattice, and
no ripples are present. In other words, in this case the soli-
tary wave behaves as a soliton. However, the increasing of
λ produces a growth of the amplitude of the solitary wave,
while its profile becomes narrower. These effects give rise,
in the solutions of equations (3), to a sequence of ripples,
which propagate in the lattice as dispersive waves with
speeds lower than the speed of the principal pulse. How-
ever, at least up to values of λ ∼= 5, the main pulse is
preserved for a long time, notwithstanding the occurrence
of frequent interactions with the ripples, which “invade”
the lattice owing to the chosen boundary conditions.

Subsequently, we have examined the space configura-
tion of the atoms for different values of time.

We note that the atoms collided by the solitonic pulse
suffer damping oscillations caused by the ripples.

Such oscillations, which are essentially absent for λ ∼=
1, are due to the fact that for λ � 1, the main wave be-
gins to “see” the discreteness of the lattice. In practice,
the dispersive component inside equations (3) cannot be
longer neglected and the solution found within the contin-
uous approximation does not hold anymore for the orig-
inal (discrete) equations of motion. In the case of some
special potentials, these phenomena have been already re-
vealed [5,6].

4 Lattice with a mass defect

We have investigated the lattice containing an atom with
mass md < m, where m = 1 is the mass of the remaining
atoms [7,8]. Our study concerns the analysis of the ampli-
tude and the period of the oscillations of the defected atom
after its collision with the solitonic pulse (15), in terms
of its mass md. We have chosen values of md such that
0 < md < 1. The defect has been located at the site 54.
This choice is motivated by the fact that, for the value of λ
in correspondence of which we have carried out mostly our
numerical simulations (λ = 2.5), the ripples propagating
at a speed less than the speed of the main solitonic pulse,
arrive at the site 54 only after that through this the pulse
reflected by the fixed atom (n = 66) is passed. Hence, such
ripples do not induce on the atom 54 spurious oscillations,
at least within the time interval in which we are interested
in the observation of the defected atom. The extremes of
such an interval are just the time in which the direct pulse
reaches the site n = 54, and the time in which this pulse
comes back to this site after its reflection at n = 66.

These computer experiments have been performed for
potentials corresponding to different values of γ (see (2)).
In particular, we have analysed the periods of the oscil-
lations induced on the defect in terms of md. We have
found that the motion of the defect is harmonic with a
period depending on md and γ. This behaviour is quite
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Fig. 1. Evolution in time (n∆t) of the speeds of the defect and
their nearest-neighbour atoms (sites 52-56), in the case γ = −1
(∆t = 0.005, md = 0.40). To make clearer the plot, the speeds
relative to the sites 52, 53, 55, 56 have been shifted of −4, −2,
+2, +4, respectively.

reasonable, since the interaction of the kink with the de-
fect excites, in the lattice, a localized mode which turns
out to decay exponentially in the space variable.

In Figure 1 the speeds of the atoms immediately closed
to the defect are reported vs. the time variable.

As one can see, the oscillations generated by the
kink on the particles are of the asymmetric type, with
a phase difference between two adjacent atoms approxi-
mately equal to π.

One can solve exactly the impurity mode problem, by
noting that outside the strongly nonlinear regime, in the
part of the chain covered by the soliton, the atomic lat-
tice vibrates with standard small amplitude oscillations.
In this harmonic frame, we have linearized the equations
of motion (3), which become

mnÿn =
γ − 1
γ

(yn+1 − 2yn + yn−1), (17)

where mn = md, the defect mass, for n = n0, and mn = 1
for n 6= n0.

We look for solutions of the type

yn = A exp
(
−| n− n0 |

L

)
exp(jφn) exp(−jωt) (18)

where L characterizes the exponential decay of the local-
ized mode. We assume φn0 = 0 and φn0±k = ±kπ. Insert-
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Fig. 2. Comparison between numerical experiments and the
theoretical prediction (21) of the period of oscillation of the
defect vs. γ for md = 0.2.

ing (18) into (17), for n = n0 we obtain

−mdω
2 =

γ − 1
γ

[
exp

(
− 1
L

)
exp(jπ)

−2 + exp
(
− 1
L

)
exp(−jπ)

]
from which

exp
(
− 1
L

)
=

γ

2(γ − 1)
mdω

2 − 1. (19)

For n = n0 + 1, equations (17, 18) give

ω2 =
γ − 1
γ

[
exp

(
− 1
L

)
+ 2 + exp

(
1
L

)]
. (20)

By virtue of (19) and (20), we get

ω = 2

√
γ − 1
γ

1
md(2−md)

,

and

T =
2π
ω

= π

√
γ

γ − 1
md(2−md). (21)

In Figures 2–4 we plot the experimental data for T , ob-
tained by integrating numerically equations (3), and com-
pare these results with the theoretical behaviour predicted
by (21), keeping the mass md fixed and varying the pa-
rameter γ.
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Fig. 3. As in Figure 2, but where now md = 0.4.
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Fig. 4. As in Figure 2, but where now md = 0.65.

In Figures 5–7 we report the experimental data for T
compared with those given by (21) for fixed γ vs. md.

We remark the existence of a very good agreement
between the theoretical predictions and the experimental
data.

We notice also that the introduction of the phase φn
in the expression (18) has been the key idea to find the
dispersion relation as a function of the defect mass.

Subsequently, we have dealt with the behaviour of the
amplitude of the speed of the defect vs. md.

For this analysis many numerical experiments have
been carried out by varying γ. In particular, we have
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1
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2

Fig. 5. Comparison between numerical experiments and the
theoretical prediction (21) of the period of oscillation of the
defect vs. its mass md for γ = −1.
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Fig. 6. As in Figure 5, but where now γ = 4.

verified how, independently of the kind of potential used
(see (2)), in the plot for the amplitude of the speed in
terms of md, two resonance peaks are present in corre-
spondence of the same values md ≈ 0.15 and md ≈ 0.375.
At this stage we observe that the ratio of the frequencies
is, approximately, 3/2. Moreover, it seems that a third res-
onance occurs, although masked by measure errors, for a
value ofmd ≈ 0.038, corresponding to a frequency equal to
3 times that of the main resonant mass. To be precise, this
third resonance exists without ambiguity for γ = −1. We
have also that the resonance peak relative to md ≈ 0.15
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Fig. 7. As in Figure 5, but in the case of Toda potential.
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Fig. 8. Behaviour of the amplitude of the defect speed oscil-
lations in terms of the mass md for γ = −1. The values of the
amplitude have been normalized with respect to its maximum.

is evident, in our numerical simulations, only starting from
values of λ between 1.75 and 2.00. For values of λ less
than 1.75, the graph of the speed amplitude in terms of
md seems to exhibit only the main peak in correspondence
of md ≈ 0.375. A similar result has been achieved in [7].

As an example, in the plots of Figures 8–10 we repro-
duce, for λ = 2.5, the experimental data of the ampli-
tude of the defect speed oscillations vs. md for γ = −1
and γ = 4, and, for comparison, those of the Toda lat-
tice, which has been studied by means of (3) taking as
initial conditions the exact solutions of the Toda lattice
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Fig. 9. As in Figure 8, but where now γ = 4.
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Fig. 10. As in Figure 8, but in the case of Toda potential.

itself [10]. Specifically, at t = 0 we have chosen

yn = −
N−1∑
i=n

ri, ẏn = 0, ∀n = 2, ..., N − 1,

where

rn = − ln(1 + ηn), ηn = β2 sech2(αn− χ0).

We have taken α = 1, β =
√

3 sinhα, χ0 = 0.5.
From the analysis of the plot we argue that the be-

haviour of the amplitude seems to possess a universality
character.
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We have tried to interpret such resonances using some
models where the results of our numerical experiments
might be taken into account. However, our attempts have
not succeeded.

In the literature, a search of such effects has essentially
failed. Anyway, a hint is contained in [7], where only the
main resonance peak is reproduced in formula (2.33), but
the effects of the discreteness of the lattice, which may
be responsible for the appearing of the other peaks, are
not considered. Another attempt is made in [1] (see for-
mulae (2.7–2.11)), where for supersonic kinks the effects
of the discreteness of the lattice are taken into account,
but the effects induced on the amplitude of the speed of
the defect in terms of its mass is ignored. An aspect to
be outlined is that the values of the mass of the defect in
correspondence of which the amplitude of the speed (and,
as well, the amplitude of the corresponding displacement
of the equilibrium position yn) seems to be resonant, re-
main essentially constant. These values turn out to be
independent of the special potential (2) exploited for the
interatomic interaction. This situation tells us that owing
to the discrete way in which the wave “sees” the lattice,
the phenomenon is caused by the strong nonlinear inter-
action between the solitonic pulse and the defect, rather
than by the type of the interatomic interaction.

5 Lattice with two defective atoms

We have examined the binomial lattice in presence of two
mass defects. Our simulations have been carried out under
the following assumptions.

(i) The number of atoms of the lattice has been brought
to 86 for increasing the time of observations, before
that the first defected site, n = 44, comes into col-
lision with the solitonic pulse reflected on the last
atom of the chain.

(ii) The mass md1 of this first defected atom has been
chosen md1 = 0.375. This value is equal to that cor-
responding to the maximum of the plot of the am-
plitude of the defect speed in terms of its mass (see
Figs. 8–10) and, therefore, to the minimum of the
energy transmitted after the crossing through the site
n = 44.

(iii) We have taken γ = −1 in the potential (2).

The aim of this analysis is to see whether in the lattice
with a second defective atom, phenomena of resonance
similar to those occurring in the case of a single defect
may appear. We have investigated numerically the role of
the presence of a second defect in terms of the distance δ
between the two defective sites. We have found that when
δ > 5, for md2 (the mass of the second defective atom)
ranging from 0 and 1, multi-peak resonance phenomena
analogous to those relative to the lattice with a single
defect are present. This means that the pulse transmitted
across the first defected atom has still an energy which
is sufficient to excite resonantly a second defect, showing
the same resonance peaks in correspondence of the same
masses (0.15 and 0.375).

However, for δ < 5 the scenario changes. In particular,
among the (not longer harmonic) oscillations of the speeds
of the two defective atoms, one notes interference effects
which are the more evident, the closer δ is to 1. To make
these phenomena manifest, numerical experiments have
been performed by taking in turn md2 = 0.05, 0.375 and
0.85. More specifically, for md2 = 0.05, an increase of the
speed amplitude of the second defect occurs. This ampli-
tude overcomes that relative to the defective atom of mass
md1 = 0.375 in correspondence of the value δ = 1. A simi-
lar increase of the amplitude is found for md2 = 0.85, but
the amount of this increase is less than the correspond-
ing one for the amplitude of the speed of the defective
atom with mass md1 = 0.375. The increase of the am-
plitude for md2 = 0.85 is followed by a decrease of the
amplitude of the speed of md1 . In the intermediate case,
md2 = 0.375, between the two defects we have observed
interference phenomena, although their intensity is not
particularly high (apart from a reduction of the ampli-
tudes of the speeds with respect to the situation in which
the lattice has a single defect).

A possible explanation of these phenomena, in relation
to the three values of the mass of the second defective
atom and for δ ∼ 1, lies in the fact that the solitonic
pulse “sees” the two defects as a unique defect, owing to
its size (comparable with the value of the lattice distance)
in correspondence of the value λ = 2.5 employed in the
numerical simulation. In practice, when the two defective
masses are contiguous, the soliton “sees” them as if these
were a single mass, conferring to the latter the same energy
that it would have transferred to a single mass of value
md1 +md2 . Indeed, for md2 = 0.05, one has a total mass
close to the mass responsible for the main maximum in the
curve representing the amplitude of the speed in terms of
the mass of the defect. On the contrary, for md1 = 0.85,
which is next to the mass of the non defective atoms of
the lattice, we have that md2 oscillates in opposition of
phase with respect to md1 . In the case md1 = md2 , both
amplitudes suffer a considerable reduction in comparison
with the case where the defects are far each from the other,
as if the soliton should “see” a greater mass, to which a
smaller speed amplitude should correspond.

An analysis resembling that previously performed has
been considered in [11] in another context, which deals
with the behaviour of the transmission coefficient of the
solitonic pulse in relation to the interference between de-
fective atoms.

6 Conclusions

We have investigated a class of nearest-neighbour inter-
action potentials for a one-dimensional chain of atoms. In
the continuum limit, the equations of motion of the lattice
(called binomial lattice) give rise to a field equation which
affords exact solutions of the solitary wave type, used as
initial conditions in the treatment of the Cauchy problem
of the lattice. These solutions have been distinguished in
supersonic and subsonic ones. It turns out that only the
supersonic solutions can be employed in the numerical
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simulations performed on the lattice. These simulations
show that solitonic pulses can propagate in the lattice.
Then, we have studied the propagation of waves in the
binomial lattice endowed with a defective atom. Precisely,
we have considered the interaction of the defect with the
solitonic pulse. From the analysis of the amplitude of the
defect speed, resonance peaks appear independently of
the particular value of the parameter γ (see (2)). There
is a strong indication that this phenomenon, which seems
new to the best of our knowledge, is due to discreteness
effects of the lattice, in the sense that the solitonic pulse
moving in the lattice is not able to “see” the lattice as a
continuum. In order to interpret the periods of oscillation
of the defect, we have described a simple model which is
quite compatible with the experimental data of numerical
simulations.

Furthermore, to have a confirmation of the occurrence
of resonance peaks induced by discreteness effects, we have
inserted in the lattice two defective atoms. Also in this
case resonance phenomena are found.

Our next programme will be addressed to the study
of the thermodynamic properties of the binomial lattice,
paying a special attention to the problem of heat conduc-
tion and the validity of the Fourier law.

This work was supported in part by PRIN 97 “Sintesi” and by
INFN-Sezione di Lecce. The authors thank Prof. Stefano Ruffo
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References

1. M. Peyard, S. Pneumatikos, N. Flytzanis, Physica D 19,
268 (1986).

2. M. Leo, R.A. Leo, G. Soliani, Phys. Lett. A 60, 283 (1977).
3. F.D. Tappert, C.M. Varma, Phys. Rev. Lett. 25, 1108

(1970).
4. L. Casetti, Phys. Scripta 51, 29 (1995).
5. M. Leo, R.A. Leo, G. Soliani, G. Mancarella, L. Martina,

Nuovo Cimento D 1, 697 (1982).
6. S. Pneumatikos, in Singularities and Dynamical Sys-

tems, edited by S. Pneumatikos (Elsevier Science Publish-
ers B.V., North-Holland, 1985), p. 397.

7. F. Yoshida, T. Sakuma, Progr. Theor. Phys. 60, 338
(1978).

8. A. Nakamura, Progr. Theor. Phys. 59, 1447 (1978).
9. K. Nagahama, N. Yajima, J. Phys. Soc. Jpn 58, 1539

(1989).
10. M. Toda, Phys. Rep. 18, 1 (1975).
11. Q. Li, S. Pneumatikos, N. Economou, C.M. Soukoulis,

Phys. Rev. B 37, 3534 (1988).


